

ICRC-CORDEX 2023

Evaluation of Extreme Precipitation Climate Indices over HKH in CMIP5 and CMIP6 Models

Raju Attada

Sreehari K, Nischal, Rohtash and K P Sooraj*

Indian Institute of Science Education and Research Mohali MoE, Government of India

*Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India

International Conference on "Regional Climate - Coordinated Regional Climate Downscaling Experiment 2023" — IITM Pune

Background and Motivation

- > Highly complex system Mountainous terrain
- Water tower of Asia sources major Asian rivers
- Solution (Third pole) Permanent ice cover with a varying degree of topographic complexity
- Unique geographical setting with steep southern slopes and, bare and gentle northern slope
- > Orographic barrier separating the wet Indian subcontinent from the arid Tibetan Plateau
- Modulates global weather patterns and is a climate regulator for much of Asia via interaction between atmosphere and topography

Credits: NASA's Earth Observatory/Joshua Stevens

Climate warming enhances snow avalanche risk in the Western Himalayas

J. A. Ballesteros-Cánovas^{a,b,1}, D. Trappmann^{a,b}, J. Madrigal-Gen

Changes in western disturbances over the Western Himalayas in a warming environment

meridional difference temperature (30N- 35N minus 50N-55N) (K) averaged over the Eurasian longitudes (20E-100E) for the DJFMA season a 500 hPa, b 200 hPa, c Map showing the difference of baroclinic (C) instability index between the second half (1980–2011) and the first half (1948–1979)

Kulkarni et al. (2018)

Data, Models, Methodology

Annual wet-day precipitation (mm) Annual total precipitation in wet days

PRCPTOT

R95p

RX1day

RX5day

SDII

R20mm

CDD

CWD

Very wet days (mm) Annual total precipitation from days >95th percentile

> Max 1-day precipitation (mm) Annual maximum 1-day precipitation

Max 5-day precipitation (mm) Annual maximum consecutive 5-day precipitation

Simple daily precipitation index (mm/day) The ratio of annual total precipitation to the number of wet days

Number of very heavy precipitation days (days) Annual count of days when daily precipitation ≥20 mm

Consecutive dry days (days) Maximum number of consecutive dry days

Consecutive wet days (days) Maximum number of consecutive wet days CMIP5 - 34 CMIP6 - 32

The World Climate Research Programme's Coupled Model Intercomparison Project

Reference Data APHRODITE

Taylor skill score (TSS) was used in ranking the models.

$$TSS = \frac{4(1 + PCC)^2}{\left(\frac{\sigma_{Model}}{\sigma_{Observation}} + \frac{\sigma_{Observation}}{\sigma_{Model}}\right)^2 (1 + R_0)^2}$$

Extremes indices, defined by the Expert Team on Climate Change Detection and Indices (ETCCDI)

Mean Precipitation and Annual Cycles

The CMIP6 and CMIP5 model ensembles generally reproduce the overall pattern of the seasonal evolution of precipitation in the HKH.

Statistical performance for annual and seasonal extreme precipitation climate indices

Improvement (%) in CMIP6 over CMIP5 Vs APHRODITE

Parameter (IP)

$$IP = 1 - \left(\frac{RMSE_{CMIP6}}{RMSE_{CMIP5}}\right)$$

Statistics of CMIP5 and CMIP6 for Climate Indices

Box plots for best multi-model mean changing rates in future times over the historical period

Historical period (1980-2005)

Entire HKH

Quasi-resonant Amplification – Linkages with EPEs ?

Extreme events are linked with the slow-moving amplified Rossby waves, known as quasi-resonant amplification (QRA)

- Kornhuber et al. (2019), Mann et al. (2018) and Coumou et al. (2014)

https://www.severe-weather.eu/cryosphere/extreme-snowfall-future-winters-alps-glaciers-challenging-global-warming-rrc/

https://www.digitaljournal.com/tech-science/the-impact-of-burning-fossil-fuels-on-todays-extreme-weather/article/535974

https://sites.google.com/view/wcmgiiserm/home

For Posdoctoral Program

Who can apply?

- Students with a PhD degree (or have submitted their PhD thesis)
- An applicant should have a PhD degree in Atmospheric Sciences/ Earth and Environmental Sciences/ Physics/ Geophysics/ Meteorology/ Hydrology/ Climate Sciences/ Mathematics/ Remote Sensing/ Computer Sciences/ Artificial Intelligence/ Data Sciences.

How to apply?

- Interested candidates may contact Dr.Raju Attada and e-mail their resume (with one-page summary of research pursued) and a brief write-up on research proposal (<1,000 words) to <u>rajuattada@iisermohali.ac.in</u>.
- We strongly encourage the interested candidates to apply for fellowships from **IISER Mohali**

Acknowledgements: MoES, World Climate Research Programme's Working Group on Coupled Modelling - CMIPs