Bringing deep learning to the
plate of climate scientists for
downscaling WCRP
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Importance of machine learning for climate

Complexity of Climate Data:
Climate data is inherently
multi-dimensional and
non-linear, capturing a vast
array of atmospheric, oceanic,
terrestrial, and even
extraterrestrial variables. It is
influenced by multiple physical
and biological factors that
interact in complex ways,
making it challenging to analyze
using traditional statistical
methods.
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Importance of machine learning for climate

Machine Learning's
Capability: Machine
Learning algorithms,
especially those utilizing
deep learning, excel at
capturing complex,
non-linear relationships.
They can learn from
massive amounts of data,
recognizing intricate
patterns and making
accurate predictions.

Zeiler, M.D. and Fergus, R., 2014. Visualizing and
understanding convolutional networks. In Computer
Vision—ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part | 13
(pp. 818-833). Springer International Publishing.



Importance of machine learning for climate

e Performance Advantage:
Studies have consistently | .\ e
shown that ML algorithms
often outperform traditional
models in predicting climate
patterns. This improved
accuracy can be critical in
developing effective I
responses to climate change.
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Background: Key Terms and Intersections

e Urban Digital Twin: An
Urban Digital Twin is a
virtual replica of a city,
replicating its physical
properties, systems, and
processes digitally. These
twins serve as a dynamic,
real-time model of the city,
allowing for simulation,
analysis, and prediction of
urban phenomena.
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What do we need for urban digital twins ?

e High resolution (< 500 m) datasets of existing climate datasets

e Development of algorithms facilitating the development of high
resolution datasets - downscaling or super-resolution

e Development of novel datasets for urban digital twins

e Merging existing physical modelling with machine learning to
develop high resolution forecasts



We first need to develop
supervised learning
datasets. The solution is
being provided by
DownScaleBench



DownScaleBench for
developing and
applying a deep
learning based urban
climate downscaling

Singh, M., Acharya, N., Jamshidi,
S., Jiao, J., Yang, Z.L., Coudert, M.,
Baumer, Z. and Niyogi, D., 2023.
DownScaleBench for developing
and applying a deep learning based
urban climate downscaling-first
results for high-resolution urban
precipitation climatology over
Austin, Texas. Computational
Lirban Science 3(1) n 22

1. Station Data 2. Coarse resolution input

Source: Input data ( e.g. Gridded observations
reanalysis or Global Historical
Climatology Network (GHCN)

or satellite product)

WRF model simulations
Earth Engine

Quality Control Planetary Computer

Eliminate null values based on
user requirements

DownScale
Bench

3. High Resolution Target 4. Development of

Single Image Super resolution supervised learning
SRCNN, SRGAN and other dataset
Generator models Unify coarse resolution, high

resolution and station
datasets in a single netcdf file
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Austin, Texas, USA multi resolution
products for 2013-01-04
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Next, we need state of the art
models to perform
super-resolution/downscaling.
The solution Is being provided
by ClimateDownscaleSuite



ClimateDownscaleSuite: Unifying deep learning models for
weather and climate downscaling
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ClimateDownscaleSuite

applied to VIIRS-

to DMSP

night time lights

data
transformation

Singh et al,
manuscript in
preparation
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We also need state of the
art novel methods to fuse
station datasets into
downscaling algorithms
MeteoGAN is the answer



MeteoGAN for urban digital twins
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Thank you



