Evaluation of CMIP6 GCMs performance during the *Boro* and *Kharif* seasons over the New Alluvial Zones of West Bengal

Purba Goswami*, Sarathi Saha and Lalu Das Department of agricultural Meteorology and Physics Bidhan Chandra krishi Viswavidyalaya, Mohanpur, Nadia WB *Presenting and corresponding author, Email: goswami.purba1904@gmail.com

INTRODUCTION

➢Climate models are the representatives of the Earth's climate system. Plenty of differentiation equations based on the laws of physics, fluid motion and chemistry are used to develop single climate model. These computer-based simulation models (GCMs) are effective tools for studying the impact of climate change.

≻The Coupled Model Intercomparison Project (CMIP) was initiated in 1995 under the influence of the Working Group on Coupled Modeling (WGCM) of the World Climate Research Programme (WCRP). The number of models and their performance is improving across generations from the first assessment report (1995) to the latest sixth assessment report (2014) of IPCC as shown by several published research articles. Index of agreement (d):

 $\frac{\sum_{i=1}^{n} (O_i - P_i)^{-1}}{(|P_i - \bar{O}| + |O_i - \bar{O}|)^2}, \quad 0 \le d \le 1$

Nash-Sutcliffe efficiency (NSE):

 $NSE = 1 - \frac{\sum_{i=1}^{n} (OBS_i - SIM_i)}{\sum_{i=1}^{n} (OBS_i - SIM_i)}$

2. Calculation of some error index $\nabla (a \cap b)^2$

Model evaluation through conventional statistics:

Table 1 Variation of computed values of different indices between observed and
CMIP6 GCMs simulated maximum temperature (T_{max}), minimum temperature (
 T_{min}) and Rainfall and their ranks and final accumulated ranks during *Kharif* season

	Tmax			VALUES	5					RANI	KS		
	MODELS	СО	D	NRMSE	PBIAS	NSE	СО	D	NRMSE	PBIAS	NSE	SUM	RANK
	ACCESS-CM2	-0.10	0.13	228.50	-10.30	-52.59	9	11	9	9	10	48	10
	BCC-ESM1	0.19	0.37	133.70	2.10	-2.93	4	4	4	4	1	17	3
	CNRM-CM6-1	0.23	0.39	109.30	1.90	-4.43	3	2	2	3	4	14	2
	CNRM-ESM2–1	0.44	0.52	87.10	0.10	-3.54	1	1	1	1	2	6	1
	INM-CM4–8	-0.14	0.15	1743.80	15.80	-59.96	10	10	12	12	12	56	12
	INM-CM5–0	0.15	0.17	1279.60	14.40	-50.84	5	8	11	10	9	43	9
	KACE-1-0-G	0.01	0.21	221.10	-7.80	-28.80	7	6	8	8	8	37	8
	MIROC-6	-0.03	0.26	177.70	-6.40	-22.24	8	5	7	7	7	34	7
	MIROC-ES2L	-0.21	0.15	1033.50	15.50	-58.37	11	9	10	11	11	52	11
	MPI-ESM1-2- LR	-0.31	0.12	161.60	-1.80	-3.55	12	12	5	2	3	34	7
	MRI-ESM2-0	0.04	0.20	162.10	-4.90	-13.42	6	7	6	6	6	31	5
	nORESM2-MM	0.43	0.38	109.70	-3.50	-10.72	2	3	3	5	5	18	4
	Tmin			VALU	ES					RAN	KS		
	MODELS	СО	D	NRMSE	E PBIAS	NSE	СО	D	NRMSI	E PBIA	S NS	SE SU	M RANK
	ACCESS-CM2	-0.36	0.27	376.60	-9.50	-9.34	12	12	5	12	12	2 53	3 12
	BCC-ESM1	-0.04	0.31	535.20	-8.10	-5.86	8	7	11	8	6	5 4() 9
	CNRM-CM6-1	0.44	0.56	196.60	2.50	-0.26	2	1	3	2	1	9	1
.:.	CNRM-ESM2-1	-0.01	0.40	175.80	-0.40	-0.49	7	4	2	1	3	17	7 2
IJ	INM-CM4–8	0.37	0.44	683.40	2.80	-0.43	3	2	12	4	2	23	3 4
	INM-CM5–0	-0.18	0.31	475.60	2.80	-0.72	9	6	10	4	4	. 33	3 6
	KACE-1-0-G	0.47	0.43	117.30	7.80	-7.12	1	3	1	7	9	2	1 3
	MIROC-6	0.02	0.30	399.50	-8.30	-6.35	6	8	7	9	8	38	3 7
	MIROC-ES2L	0.14	0.39	454.80	6.00	-2.33	4	5	9	5	5	28	3 5
	MPI-ESM1-2-LR	-0.32	0.28	435.00	-8.70	-7.36	11	10	8	10	10	0 49) 11
	MRI-ESM2-0	-0.24	0.30	388.80	-7.80	-5.99	10	9	6	7	7	39	9 8
	NORESM2MM	0.14	0.27	268.40	-9.50	-8.97	5	11	4	12	11	1 43	3 10
\sim	Rainfalll			VALUI	ES	1				RAN	KS		
	MODELS	СО	D	NRMSE	PBIAS	NSE	CO	D	NRMSI	E PBIA	S NS	E SUI	M RANK
	ACCESS-CM2	0.34	0.28	888.50	1035.20	-17.22	3	6	12	12	11	1 44	4 10
	BCC-ESM1	0.12	0.37	119.40	38.60	-5.25	5	3	8	8	3	27	7 4
012 2014	CNRM-CM6–1	-0.13	0.19	107.50	26.60	-14.36	7	10	4	4	9	34	4 9
	CNRM-ESM2-1	0.45	0.47	109.80	66.50	-7.84	2	1	9	9	4	2:	5 3

➢ In spite of their continuous improvement of climate model in terms of their physics , regulation and uncertainty , there still remains some questions as to how efficiently the models can reproduce the local climatic information.

Each model under CMIP6 is not suitable for every location. it is still necessary to test the model performance on regional and local scale because of the inherent bias and uncertainty shown by the CMIP6 GCMs. So evaluation is required to judge the best performing model for a given site.
To overcome this problem, a study was designed to carry out the latest generations of IPCC CMIP6 model evaluation over the New Alluvial Zone (NAZ) of West Bengal.

OBJECTIVES

- To evaluate the CMIP6 GCMs performance for two major crop growing seasons (*Boro* and *Kharif*) over Gangetic West Bengal region of India
- 2. To identify the crop season-wise better performing CMIP6 GCMs

for assessing the impact of climate change on agriculture

Error index (NRMSE):

Percent bias (PBIAS):

Tmin

NRMSE =

RESULTS AND DISCUSSIONS

CMIP6 Model evaluation through visual inspection for *Kharif* season

INM-CM5–0	-0.39	0.19	154.40	27.40	-4.07	11	9	5	5	1	31	7
KACE-1-0-G	-0.17	0.18	105.20	-5.60	-14.63	8	11	2	2	10	33	8
MIROC-6	-0.25	0.12	121.00	-33.70	-22.26	10	12	6	6	12	46	11
MIROC-ES2L	0.13	0.30	177.50	-36.60	-9.69	4	4	7	7	6	28	6
MPI-ESM1-2LR	-0.45	0.23	331.90	270.10	-13.32	12	7	11	11	8	49	12
MRI-ESM2-0	0.65	0.41	164.30	175.50	-9.69	1	2	10	10	5	28	6
NORESM2-MM	0.08	0.29	99.40	-4.90	-10.48	6	5	1	1	7	20	1

-18.50 -4.31

9

3

25

-0.20 0.21

138.70

INM-CM4–8

Table 2. Variation of ranks of each model according to different meteorologicalparameters but irrespective method of analysis (indices) for *Kharif* season

MODELS	TMAX	TMIN	RF	SUM	RANK
ACCESS-CM2	10	12	10	32	12
BCC-ESM1	3	9	4	16	4
CNRM-CM6-1	2	1	9	12	2
CNRM-ESM2-1	1	2	3	6	1
INM-CM4-8	12	4	3	19	7
INM-CM5-0	9	6	7	22	9
KACE-1-0-G	8	3	8	19	7
MIROC-6	7	7	11	25	10
MIROC-ES2L	11	5	6	22	9
MPI-ESM1-2-LR	7	11	12	30	11

Table 3. Wariation of ranks of each model according to different meteorological parameters but invespective method of analysis (indices) for *Boyro* season

MODELS	TMAX	TMIN	RF	SUM	RANK
ACCESS-CM2	7	5	6	18	5
BCC-ESM1	8	10	5	23	7
CNRM-CM6-1	9	2	8	19	6
CNRM-ESM2-1	10	3	11	24	8
INM-CM4-8	7	7	3	17	4
INM-CM5-0	5	8	1	14	3
KACE-1-0-G	11	12	4	27	12
MIROC-6	12	7	7	26	10
MIROC-ES2L	2	1	9	12	2
MPI-ESM1-2-LR	5	10	12	27	12
MRI-ESM2-0	1	4	3	8	1
NODESNO SUI	nmar	V X	Jonci	usion	0

2. CMIP6 data:

are 23.6565 N and 88.2254 E.

After scrutinizing the GCMs outputs through visual inspection, it was noted that many CMIP6 GCMs simulation have missing data and may not have future outputs for all SSPs, So present study was carried out by consideringalmost 13 Numbers of GCMs which was available through available athttps://esgf-node.llnl.gov/search/cmip6).

The model performance is analyzed by two ways: 1. Calculation of some agreement index

Correlation coefficient (r):

✓ The present study showed that CNRM–ESM2–1of France to be the best fit model for *Kharif* season and MRI-ESM2-0 of Japan for *Boro* season whereas ACCESS-CM2of Australia for *Kharif* season andMPI-ESM1-2-LR of Germany for *Boro* season were the worst performing models over that above mentioned location

 \checkmark it can be concluded that whenever users consider the climate output for their impact assessment study it is necessary to evaluate the model simulation for the study region for a particular temporal scale.

So, the present study will be very much beneficial for the researchers interested in any kind of climate related impact study over the NAZ of west Bengal.