

Evaluating the Accuracy of Reanalysis Products for Wind Energy Development: A Comparison with In-Situ Observations

Coordinated Regional Climate Downscaling Experiment

KHAN MUHAMMAD ABID, KOJI DAIRAKU, SAURABH KELKAR, Department of Engineering Mechanics and Energy, Regional Hydroclimate Lab

Poster Summary: Reanalysis products are vital for analyzing historical weather patterns in wind energy resource evaluations, especially in wind energy-focused South Asian countries. Differences between actual and simulated land surface wind speeds emphasize the need for simulated products in long-term assessments. This study compares reanalysis products with station observations to verify wind energy estimations and support wind farm development.

1. Brief Introduction

- * Reanalysis products are crucial for analyzing historical weather patterns, especially in wind energy resource evaluations.
- South Asian countries prioritize energy development to address climate change and meet energy demands.
- Wind speed measurements indicate global terrestrial stilling, a decline in land surface wind speed since the 1960s, followed by a reversal around 2010 (Fan, W., Liu, Y., et al. 2021).

2. Objective

- * Highlight the difference between actual and simulated land surface wind speeds.
- **Emphasize the importance of caution** when utilizing reanalysis products.
- * Focus on the need for accurate assessment and forecasting of winds in the Subcontinent area.

3. DATA AND METHODOLOGY

Table 1. Data

Data		Time resolution	Variable (10-m)	Period	Horizontal grid spacing
Station data	HadISD	3, 6, 12-hr	Wind Speed		
Reanalysis	ERA5	1-hr	SfcWind	1973-2005	0.25° × 0.25°
	NCEP JRA-55	6-hr	(Uas,Vas)		1.875° × 2.5° 1.25° × 1.25°

- Hourly data calculated to daily mean regridded by the bilinear (bill) interpolation method at reference grid of 0.1 degrees spacing.
- **❖The arbitrary threshold** of 90% is used as a criterion for selecting station data with valid values References (Molina et al., 2022; 2021; Gbode et al., 2019).

Figure 1. Location of WMO stations in the South Asia domain.

Figure 2. Annual mean 10m wind speed in Reanalysis and compared to HadISD

Year

4. RESULTS

Table 2. Summary Statistics for 10m wind speed between reanalysis and observations

Dataset	SD (m/s)	RMSE (m/s)	Mean Bias (m/s)	Pearson Correlation Coefficient, R	Coeff. of Determination (R ²)	Climatologic al Mean (m/s)
ERA5	1.33	1.70	0.49	0.52	0.31	2.53
JRA55	0.96	1.40	0.36	0.60	0.40	2.38
NCEP	1.09	1.97	1.19	0.40	0.21	3.15
Multi-Reanalysis Ensemble (MRE)	0.99	1.49	0.63	0.57	0.37	2.67
HadISD	1.46					2.04

5. CONCLUSIONS

- Analyzed the Subcontinent wind surface speed global trend using and 36 products reanalysis meteorological stations for 1973-2005.
- other Compared products, JRA55 reanalysis correlation higher coefficient (0.40),mean bias (0.36), and lower Root Mean Square Error (1.40).
- ☐ In the Subcontinent, wind **speed** showed a decreasing trend from 1973 to 2005 based on in-situ measurements, as confirmed by Fan et al. (2021).
- This study emphasizes the need for careful selection of reanalysis datasets in long-term wind energy assessments due to significant data discrepancies.
 - assessment might help wind energy companies predict changes in production maximize economic benefits.

Figure 3. Annual Standardized anomaly for 10m wind

1- Fan, W., Liu, Y., Chappell, A., Dong, L., Xu, R., Ekström, M., ... Zeng, Z. (2021). Evaluation of global reanalysis land surface wind speed trends to support wind energy development using in situ observations. Journal of Applied Meteorology and Climatology, 60(1), 33-50. doi:10.1175/jamc-d-20-0037.1

2- Molina, M. O., Careto, J., Gutiérrez, C., Sánchez, E., & Soares, P. (2022). The added value of high-resolution EURO-CORDEX simulations to describe daily wind speed over Europe. doi:10.5194/egusphere-egu22-1043 3- Gbode, I. E., Adeyeri, O. E., Menang, K. P., Intsiful, J. D., Ajayi, V. O., Omotosho, J. A., & Akinsanola, A. A. (2019). Observed changes in climate extremes in Nigeria. Meteorological Applications, 26(4), 642-654.

ACKNOWLEDGEMENT

This research is supported by the Ministry of Education, Culture, Sports, Science and Technology, Japan under Japanese Government MEXT: Monbukagakusho Scholarship